

Scalp, Temple and Face

Introduction

- The **scalp** and **superficial temporal region** together cover the **vault and upper part of the lateral aspect** of the skull.
- It extends from the **eyebrows** in front to the **superior nuchal lines** behind.
- Laterally, it extends to the **zygomatic arch**.
- Functionally, it **protects the cranial vault** and **houses superficial arteries and veins** important in head and neck surgery.

Surface Landmarks

1. Vertex

- The highest point on the skull when the head is in anatomical position.
- Lies midway between **gabella** and **external occipital protuberance**.

2. Bregma

- Meeting point of **coronal** and **sagittal sutures**.
- Corresponds to the **anterior fontanelle** in infants.

3. Lambda

- Junction of **sagittal and lambdoid sutures**.
- Represents the **posterior fontanelle** of infancy.

4. Pterion

- H-shaped junction of **frontal, parietal, sphenoid (greater wing), and temporal bones**.
- Lies 4 cm above the midpoint of the zygomatic arch.
- **Clinical importance:** Related to the **anterior branch of the middle meningeal artery**.

5. Asterion

- Junction of **parietal, occipital, and mastoid parts of temporal bone**.
- Overlies **transverse–sigmoid sinus junction**.

6. External Occipital Protuberance

- Midline projection at the back of skull; palpable landmark for neck muscle attachments.

7. Superior Nuchal Line

- Curved ridge extending laterally from the external occipital protuberance.
- Provides attachment to **trapezius** and **sternocleidomastoid**.

8. Temporal Line

- Arching ridge on parietal bone marking the attachment of **temporalis fascia and muscle**
- Upper line ? fascia; lower line ? muscle.

9. Zygomatic Arch

- Bony bridge connecting **zygomatic** and **temporal bones**.
- Lies opposite the lower part of the external auditory meatus.
- Landmark for **middle meningeal artery** (crosses 1 inch above it).

Scalp

Extent

- **Anteriorly:** Up to **supraorbital margins**.
- **Posteriorly:** To **superior nuchal lines**.
- **Laterally:** Up to **zygomatic arches**.

Five Layers of the Scalp (Mnemonic: S-C-A-L-P)

1. **S – Skin**

- Thick, hair-bearing, and richly supplied with **sebaceous glands**.
- Contains sweat glands and hair follicles ? prone to infection.

2. **C – Connective Tissue (Superficial fascia)**

- Dense fibrofatty tissue with **vessels and nerves** tightly bound by fibrous septa.
- Injury causes **profuse bleeding** due to inability of vessel walls to retract.

3. **A – Aponeurosis (Epicranial aponeurosis)**

- Strong tendinous sheet connecting **frontalis** and **occipitalis** muscles.
- Also called **galea aponeurotica**.
- Provides mobility and expression (raising eyebrows).

4. **L – Loose Areolar Tissue**

- “Danger area” of scalp — allows movement of scalp over pericranium.
- Contains **emissary veins** connecting superficial veins ? intracranial sinuses ? infection risk.

5. **P – Pericranium**

- Periosteum of skull bones.
- Loosely attached except at sutures (where it continues as sutural ligaments).

Blood Supply

- **Arteries:**

- *From external carotid:* Superficial temporal, posterior auricular, occipital.

- *From internal carotid:* Supraorbital, supratrochlear (branches of ophthalmic).
- **Veins:** Follow arteries; communicate via emissary veins with dural sinuses.

Nerve Supply

- **Anterior region:**
 - Supratrochlear and Supraorbital (branches of ophthalmic division of trigeminal nerve).
- **Lateral region:**
 - Zygomaticotemporal (maxillary division), Auriculotemporal (mandibular division).
- **Posterior region:**
 - Greater occipital (C2), Third occipital (C3), Lesser occipital (C2).

Lymphatic Drainage

- **Anterior scalp:** Pre-auricular and parotid nodes.
- **Posterior scalp:** Occipital and posterior auricular nodes.
- **Lateral scalp:** Parotid nodes.

Dissection Notes

- **Incision:** Coronal incision across vertex behind hairline, extend downward in midline.

- Reflect skin and superficial fascia together with vessels and nerves.
- Note:
 - The **dense connective tissue** retains cut arteries open ? **profuse bleeding**.
 - The **epicranial aponeurosis** glides over the loose areolar tissue.
 - The **danger area** (loose tissue layer) communicates with **intracranial sinuses** via emissary veins.

Superficial Temporal Region

Boundaries

- **Above:** Temporal line.
- **Below:** Zygomatic arch.
- **In front:** Frontal process of zygomatic bone.
- **Behind:** Auricle.

Contents

- **Temporalis fascia** and **superficial temporal vessels and nerve**.
- **Auriculotemporal nerve** (branch of mandibular nerve).
- **Superficial temporal artery** – one of the terminal branches of **external carotid artery**.

- **Vein** – joins maxillary vein ? forms **retromandibular vein**.

- **Lymphatics** – drain to preauricular nodes.

Clinical Anatomy

- **Scalp wounds** bleed profusely ? dense connective tissue prevents vasoconstriction.

- **Infection spread:**

- From loose areolar tissue (danger area) ? emissary veins ? intracranial venous sinuses ? meningitis.

- **Black eye (periorbital ecchymosis):**

- Due to collection of blood under loose areolar tissue tracking forward into eyelids.

- **Sebaceous cysts** – common on scalp due to blocked ducts of sebaceous glands.

- **Scalp avulsion** – in accidents, entire scalp can be torn at the loose areolar layer; prompt reattachment possible.

- **Temporal artery biopsy** – for diagnosing **giant cell arteritis**.

- **Temporal pulse** – felt just above the zygomatic arch, anterior to ear.

Face

Extent

- Extends from **hairline above to chin and base of mandible below.**
- **Laterally** up to the **auricle**.
- The **forehead** belongs to both **face and scalp**.

Dissection

- Make an incision along the midline of the face, from forehead to chin.
- Make horizontal incisions across zygomatic arch and mandible.
- Reflect skin laterally with care to preserve:
 - **Facial artery and vein**
 - **Parotid duct**
 - **Branches of the facial nerve**

Skin

1. **Highly vascular** ? facial wounds bleed profusely but heal rapidly.
2. Rich in **sebaceous and sweat glands** ? causes oily texture and acne.
3. Skin is **thick and elastic** due to muscle insertions; wounds gape widely.
4. **Lax** in most parts ? edema spreads easily, especially in renal disease (starts in eyelids).

- 5. **Fixed** over cartilages (nose, ear) ? boils are painful.

Superficial Fascia

- Contains:
 - **Facial muscles** (inserted into skin).
 - **Vessels and nerves** supplying muscles and skin.
 - **Variable fat** — abundant in cheeks (buccal pads) for sucking in infants.
- **Deep fascia:** Absent except:
 - Over **parotid gland** (forms parotid fascia).
 - Over **buccinator muscle** (forms buccopharyngeal fascia).

Facial Muscles

- **Subcutaneous muscles** responsible for facial expressions.
- Develop from **second branchial arch mesoderm** ? supplied by **facial nerve (VII cranial)**.
- Represent **remnants of panniculus carnosus** (muscle sheet in lower animals).
- Act as **sphincters and dilators** around three facial openings:

- **Palpebral fissure:** orbicularis oculi (sphincter), frontalis (dilator).
- **Oral fissure:** orbicularis oris (sphincter); other muscles act as dilators.
- **Nostrils:** dilator naris, compressor naris, depressor septi.

Groups of Muscles

1. Muscles of the Scalp

- **Occipitofrontalis** – elevates eyebrows, wrinkles forehead.

2. Muscles around Auricle

- **Auricularis anterior, superior, posterior** – vestigial, move auricle slightly.

3. Muscles of Eyelids and Orbit

- **Orbicularis oculi:** sphincter; closes eyelids.
- **Corrugator supercilii:** produces vertical wrinkles over nose.
- **Levator palpebrae superioris:** elevates upper eyelid (not a facial muscle).

4. Muscles of the Nose

- **Procerus, Compressor naris, Dilator naris, Depressor septi.**

5. Muscles around Mouth

- **Orbicularis oris:** sphincter; closes lips.
- **Buccinator:** aids in blowing and chewing; pierced by parotid duct.

- **Levator labii superioris, Zygomaticus major/minor, Levator anguli oris:** elevate mouth angle/lip.
- **Depressor anguli oris, Depressor labii inferioris, Mentalis:** depress lip.
- **Risorius:** retracts mouth angle (smile).
- **Platysma:** tenses skin of neck, depresses mandible in fright.

6. Modiolus (corner of mouth)

- Fibromuscular node 1.25 cm lateral to mouth angle.
- Formed by interlacing of 5 muscles:
Zygomaticus major, Buccinator, Levator anguli oris, Risorius, Depressor anguli oris.

Nerve Supply of the Face

Motor Supply

- **Facial nerve (VII cranial)** divides within the parotid gland into **five terminal branches:**
 1. **Temporal** ? Frontalis, orbicularis oculi (upper part).
 2. **Zygomatic** ? Orbicularis oculi (lower eyelid).
 3. **Buccal** ? Muscles of upper lip, cheek.
 4. **Marginal mandibular** ? Lower lip muscles.
 5. **Cervical** ? Platysma.

(Mnemonic: To Zanzibar By Motor Car)

Test: Place wrist on ear, spread fingers over face—each finger represents a branch.

Sensory Supply

- Derived from **Trigeminal nerve (V cranial):**

- **Ophthalmic division (V1):** Supraorbital, supratrochlear, infratrochlear, external nasal.
- **Maxillary division (V2):** Infraorbital, zygomaticofacial, zygomaticotemporal.
- **Mandibular division (V3):** Buccal, auriculotemporal, mental nerves.

Clinical Anatomy

1. Facial wounds:

- Bleed freely but heal well due to rich blood supply.

2. Facial nerve palsy (Bell's palsy):

- Paralysis of muscles of expression ? face deviates to opposite side; inability to close eyelid, drooping of mouth, loss of nasolabial fold.

3. Parotid gland injury:

- May affect terminal branches of facial nerve within the gland.

4. Buccinator function:

- Paralysis causes food to accumulate between cheek and gums.

5. Infection and edema:

- Spread rapidly due to loose areolar tissue and rich blood supply.

6. Angular vein (danger area):

- Communication between **facial vein** and **cavernous sinus** ? risk of intracranial spread of infection.

7. “Black eye”:

- Blood from scalp injury tracks to eyelids through loose tissue of face.

8. Plastic surgery:

- Excellent healing and minimal scarring due to vascularity and elasticity of skin.

Arteries of the Face

Features

- The **face is richly vascular**, ensuring rapid healing and excellent results in plastic surgery.
- Blood supply is mainly from branches of the **external carotid artery**, assisted by branches of **ophthalmic artery (internal carotid)**.

Main Arteries

1. **Facial artery** – chief artery of the face.
2. **Transverse facial artery** – branch of superficial temporal artery.
3. **Small branches** – accompany cutaneous nerves (from ophthalmic, maxillary, and superficial temporal arteries).

Dissection

- Identify **facial artery** at the **lower border of the mandible**, anterior to the **masseter muscle** — known as “**Anaesthetist’s artery**” (palpable point).
- Trace its **tortuous course** upwards and medially across the face:
 - Crosses body of mandible ? angle of mouth ? side of nose ? medial angle of eye.
- Deep to **zygomaticus major** and **levator labii superioris**, but superficial to **buccinator**.

Facial Artery (Facial Part)

Origin

- From **external carotid artery**, just above the greater cornu of hyoid bone.

Course

1. Cervical part ? through submandibular region, enters face by winding around mandible.
2. Facial part ? passes obliquely across face up to medial angle of eye.

Branches

- **Cervical branches:**

- Ascending palatine, tonsillar, submental, glandular branches.

- **Facial branches:**

- Inferior labial
- Superior labial
- Lateral nasal
- Angular (terminal branch).

Distribution

- Supplies **lips, nose, cheek, and lower eyelid.**

Veins of the Face

Facial Vein

- **Formation:** Union of **supratrochlear and supraorbital veins** near medial angle of eye.
- Continuation of **angular vein** down the face.
- Runs behind the facial artery, straight and superficial.
- **Termination:** Drains into **internal jugular vein.**

Tributaries

- Correspond to branches of the facial artery.
- **Important communications:**
 - **Angular vein ? superior ophthalmic vein ? cavernous sinus.**
 - **Deep facial vein ? pterygoid venous plexus.**

Clinical Anatomy (Face Vessels)

1. Danger area of the face:

- Bounded by **nose and upper lip** triangle.
- Infection can spread from facial vein ? angular vein ? cavernous sinus ? **cavernous sinus thrombosis** (fatal).

2. Anaesthetist's artery:

- Facial artery palpable where it crosses mandible.

3. Facial vein injuries:

- No valves ? spread of infection possible in both directions.

4. Facial bleeding:

- Profuse due to rich anastomoses; easily controlled by pressure.

Lymphatic Drainage of the Face

1. Upper face (forehead, eyelids, lateral nose, upper lip)

? Pre-auricular (parotid) lymph nodes.

2. Cheek and lateral face

? Submandibular lymph nodes.

3. Lower lip and chin

? Submental lymph nodes.

4. Deep structures (e.g., buccinator, gums)

? Deep cervical nodes.

Clinical note:

In **carcinoma of lower lip**, metastasis occurs to **submental nodes**;

In **upper lip**, to **submandibular nodes**.

Eyelids (Palpebrae)

Structure

- Two movable folds guarding the **palpebral fissure**.
- **Skin:** Thin, delicate, hairless.
- **Superficial fascia:** Very loose ? rapid swelling in edema or inflammation.
- **Orbicularis oculi:** Closes eyelids.
- **Tarsal plates:** Dense fibrous plates giving shape and firmness.

- **Tarsal glands (Meibomian glands):**

- Modified sebaceous glands opening at lid margins; prevent tear overflow.

- **Conjunctiva:** Thin mucous membrane lining inner surface of lids.

Nerve Supply

- **Motor:**

- Orbicularis oculi ? Facial nerve (VII).
- Levator palpebrae superioris ? Oculomotor nerve (III).
- Superior tarsal (Müller's) muscle ? Sympathetic fibers.

- **Sensory:**

- Upper lid ? Supraorbital, supratrochlear, lacrimal, infratrochlear (V1).
- Lower lid ? Infraorbital (V2).

Blood Supply

- **Arteries:** Ophthalmic artery (from internal carotid).

- **Veins:** Ophthalmic veins ? cavernous sinus.

Clinical Anatomy (Eyelids)

1. **Stye:** Acute infection of eyelash follicle or gland of Zeis.

2. **Chalazion:** Chronic inflammation of Meibomian gland.
3. **Ptosis:** Drooping of upper eyelid due to paralysis of:
 - **Oculomotor nerve (complete ptosis)** or
 - **Sympathetic fibers (partial ptosis).**
4. **Blepharospasm:** Involuntary eyelid closure from facial nerve irritation.
5. **Black eye:** Blood spreads to eyelid from scalp injury (loose areolar tissue).
6. **Conjunctivitis:** Redness due to dilated conjunctival vessels.

Lacrimal Apparatus

Introduction

- The **lacrimal apparatus** maintains the **tear film** and **drainage system** of the eye.
- Its main function is **lubrication, protection from dust, and nutrition of cornea and conjunctiva.**

Components

1. **Lacrimal gland** – secretes tears.
2. **Lacrimal ducts** – convey tears to the conjunctival sac.
3. **Conjunctival sac** – space between eyeball and eyelid.

4. **Lacrimal canaliculi** – small ducts draining tears from puncta.
5. **Lacrimal sac** – tear reservoir at medial angle of eye.
6. **Nasolacrimal duct** – drains tears into inferior meatus of the nose.

Lacrimal Gland

Position:

- Lies in the **lacrimal fossa** of the frontal bone in the superolateral angle of orbit.
- Size: ~20 mm x 12 mm x 5 mm.

Parts:

- **Orbital part:** Large, above the aponeurosis of levator palpebrae superioris.
- **Palpebral part:** Small, below the aponeurosis.
 - Separated by **levator aponeurosis**, but connected by ducts.

Ducts:

- About **10–12 small ducts** open into the **superior fornix** of conjunctiva.

Nerve Supply

- **Sensory:** Lacrimal nerve (from ophthalmic division, V?).
- **Parasympathetic (secretomotor):**

- From **lacrimal nucleus (facial nerve)** ? greater petrosal nerve ? nerve of pterygoid canal ? pterygopalatine ganglion ? zygomatic branch of V? ? lacrimal nerve ? gland.
- **Sympathetic:** From **internal carotid plexus** via deep petrosal nerve ? same route.

Blood Supply

- **Lacrimal artery** (branch of ophthalmic artery).
- **Vein:** Drains into **superior ophthalmic vein**.

Dissection

- Reflect the upper eyelid laterally to expose the superolateral part of orbit.
- Locate the **lacrimal gland** in the lacrimal fossa of frontal bone.
- Identify ducts entering superior fornix.
- Follow medial drainage route:
Lacrimal puncta ? canaliculi ? sac ? nasolacrimal duct ? inferior meatus.

Clinical Anatomy

1. **Epiphora:**
 - Overflow of tears due to blockage in nasolacrimal duct (common in elderly).
2. **Dacryocystitis:**

- Infection of lacrimal sac ? swelling at medial canthus; may form abscess or fistula.

3. **Dry eye (keratoconjunctivitis sicca):**

- Due to lacrimal gland hyposecretion or facial nerve lesion.

4. **Neonatal dacryocystitis:**

- Congenital blockage of nasolacrimal duct at **valve of Hasner**.

5. **Crocodile tears syndrome:**

- Misrouted parasympathetic fibers after facial nerve injury ? lacrimation during eating.

6. **Lacrimal gland tumors:**

- Cause proptosis and inferomedial displacement of eyeball.

Development of Face

Origin

- Develops mainly between **4th and 10th weeks of intrauterine life**.
- Derived from **frontonasal prominence** and **first pharyngeal arch** components.

Prominences Involved

1. **Frontonasal process:**

- Forms **forehead, bridge of nose, and medial and lateral nasal prominences.**

2. **Maxillary processes (from first arch):**

- Form **cheeks, lateral part of upper lip, and upper jaw.**

3. **Mandibular processes (from first arch):**

- Fuse to form **lower lip and lower jaw.**

Steps in Formation

- **Nasal placodes** appear on frontonasal process ? become **nasal pits.**
- **Medial nasal prominences** fuse ? form **intermaxillary segment** ? gives rise to:
 - Philtrum of upper lip
 - Premaxilla
 - Primary palate
- **Lateral nasal prominences** ? form **sides (alae) of nose.**
- **Maxillary processes** grow medially ? fuse with **medial nasal prominences** forming:
 - Upper lip (excluding philtrum)
 - Upper jaw
 - Secondary palate

Derivatives

- **Upper lip:** Fusion of two maxillary and two medial nasal prominences.
- **Lower lip and jaw:** From two mandibular prominences.
- **Cheeks:** Maxillary processes.
- **Nose:**
 - Bridge ? frontonasal process.
 - Dorsum and sides ? lateral nasal processes.
 - Tip and nasal septum ? medial nasal processes.
 - Alae ? lateral nasal processes.

Developmental Anomalies

- **Cleft lip:** Non-fusion of medial nasal and maxillary processes.
- **Oblique facial cleft:** Failure of fusion between lateral nasal and maxillary processes.
- **Median cleft lip:** Non-fusion of two medial nasal processes.
- **Macrostomia:** Incomplete fusion of maxillary and mandibular processes (large mouth).
- **Microstomia:** Excessive fusion ? small mouth.
- **Cleft lower lip:** Rare, due to failure of mandibular fusion.

Molecular Regulation of Facial Development

- **Facial development** guided by interplay of **gene expression gradients and signaling pathways**.
- **Key molecular factors:**
 - **SHH (Sonic hedgehog):** Controls midline fusion and frontonasal process outgrowth.
 - **FGFs (Fibroblast growth factors):** Regulate proliferation in facial prominences.
 - **BMPs (Bone morphogenetic proteins):** Induce nasal placode formation.
 - **TGF-? and MSX genes:** Govern epithelial–mesenchymal interactions.
 - **Retinoic acid gradients:** Critical for symmetry; imbalance causes craniofacial anomalies.
 - **Homeobox genes (DLX, HOX):** Determine regional identity of facial arches.

Clinical correlation:

- Mutations in **SHH** ? *holoprosencephaly* (single midline structure).
- Mutations in **FGF or BMP signaling** ? *cleft lip/palate* or *craniofacial dysmorphia*.

Mnemonics

1. Components of the Lacrimal Apparatus

Mnemonic — “Giant Cats Can Sing Naturally”

- **G** ? *Gland* (lacrimal gland)
- **C** ? *Canaliculi* (superior and inferior)
- **C** ? *Conjunctival sac*
- **S** ? *Sac (lacrimal)*
- **N** ? *Nasolacrimal duct*

2. Nerve Supply of Lacrimal Gland

Mnemonic — “Face Loves Pretty Tears”

- **F** ? *Facial nerve* (parasympathetic source)
- **L** ? *Lacrimal nucleus* ? *greater petrosal nerve*
- **P** ? *Pterygopalatine ganglion* (relay station)
- **T** ? *Terminal lacrimal nerve* (branch of V?)

3. Developmental Prominences of the Face

Mnemonic — “Five Prominent Parts Make Faces”

- **F** ? *Frontonasal process*
- **P** ? *Paired maxillary processes*
- **P** ? *Paired mandibular processes*

4. Derivatives of Medial Nasal Prominences

Mnemonic — “Phil Prepares Palate”

- **Phil** ? *Philtrum* of upper lip

- **Prepares** ? *Premaxilla*

- **Palate** ? *Primary palate*

5. Derivatives of Lateral Nasal Prominences

Mnemonic — “Lateral ? Lateral walls of Nose”

- Form the *alae* (sides) of nose.

6. Dangerous Triangle of Face

Mnemonic — “Upper Lip and Tip”

- Area between nose and upper lip — infections here spread to **cavernous sinus** via **angular vein**.

Facts to Remember

1. **Lacrimal gland** lies in the **lacrimal fossa of the frontal bone**, with **orbital and palpebral parts**.
2. **Parasympathetic fibers** to the lacrimal gland originate from the **facial nerve**, relaying in the **pterygopalatine ganglion**.

3. Tears drain through the **puncta** ? **canalliculi** ? **sac** ? **nasolacrimal duct** ? **inferior meatus of nose**.
4. **Valve of Hasner** guards the opening of the nasolacrimal duct; failure to open causes **neonatal dacryocystitis**.
5. **Epiphora** = overflow of tears; **dacryocystitis** = inflammation of lacrimal sac.
6. **Development of face** begins in the **4th week** from **five prominences** — one frontonasal and paired maxillary and mandibular.
7. **Medial nasal processes** form **philtrum, premaxilla, and primary palate**.
8. **Lateral nasal processes** form the **sides (alae) of nose**.
9. **Maxillary processes** fuse with **medial nasal** to form **upper lip and secondary palate**.
10. **Mandibular processes** fuse in the midline to form **lower lip and mandible**.
11. **Cleft lip** results from non-fusion of **maxillary and medial nasal processes**.
12. **Cleft palate** occurs due to failure of fusion of **palatine shelves**.
13. **Craniofacial anomalies** often result from disruption of **SHH, FGF, BMP, or retinoic acid signaling**.
14. The **nasolacrimal duct** develops from a **solid cord of ectoderm** in the **naso-optic groove** that later canalizes.
15. The **nasal placodes** invaginate to form **nasal pits**, which later become the **nostrils**.
16. **Face develops faster** than brain; therefore, malformations often have both cranial and facial involvement.

17. **Medial nasal fusion failure** ? *median cleft lip*; **lateral nasal fusion failure** ? *oblique facial cleft*.
18. The **facial artery** forms the chief arterial supply to face; **facial vein** communicates with **cavernous sinus** via angular vein.
19. **Lacrimal secretion increases** by parasympathetic stimulation (crying, emotion, irritation).
20. **Tears contain lysozyme**, which destroys bacterial cell walls, providing antimicrobial defense.

Clinicoanatomical Problems

1. Epiphora (Overflow of Tears)

- **Cause:**

- Blockage in **nasolacrimal duct** or **puncta** prevents tear drainage.

- **Symptoms:**

- Constant tearing and wetness at medial canthus.
 - Skin excoriation from chronic moisture.

- **Anatomical Basis:**

- Tears accumulate in conjunctival sac ? cannot drain via lacrimal passages.

- **Treatment:**

- *Dacryocystorhinostomy (DCR)* — surgical creation of new passage between lacrimal sac and nasal cavity.

2. Dacryocystitis (Inflammation of Lacrimal Sac)

- **Cause:**

- Infection due to stasis of tears in obstructed sac.

- **Clinical Features:**

- Painful swelling at **medial canthus of eye**.
- Tenderness, redness, pus discharge on pressure over sac.

- **Complication:**

- May burst ? **lacrimal fistula** discharging tears on cheek.

- **Treatment:**

- Drainage and antibiotics; chronic cases ? DCR surgery.

3. Crocodile Tears Syndrome (Bogorad Syndrome)

- **Mechanism:**

- Misrouted regeneration of **facial nerve** fibers after injury.

- **Effect:**

- Parasympathetic fibers to lacrimal gland are wrongly connected to salivary fibers.

- **Clinical Feature:**

- **Lacrimation during eating** (“gustatory lacrimation”).

- **Relevance:**

- Occurs after **Bell's palsy** or **facial nerve trauma**.

4. Congenital Dacryocystitis

- **Cause:**

- Failure of canalization of **nasolacrimal duct** at **valve of Hasner** in newborns.

- **Clinical Feature:**

- Mucopurulent discharge from eyes since birth.

- **Treatment:**

- Massage of lacrimal sac; if persistent ? probing to open the duct.

5. Cleft Lip (Harelip)

- **Cause:**

- Non-fusion of **maxillary process** with **medial nasal process**.

- **Types:**

- *Unilateral or bilateral; complete or incomplete.*

- **Effect:**

- Gap in upper lip, may extend to nostril.

- **Functional Problems:**

- Difficulty in sucking and speech.

- **Treatment:**

- Surgical correction (cheiloplasty) after 3 months of age.

6. Cleft Palate

- **Cause:**

- Failure of fusion of **palatine shelves (maxillary processes)**.

- **Clinical Feature:**

- Communication between oral and nasal cavities.
- Regurgitation of fluids through nose.
- Nasal tone of voice.

- **Treatment:**

- Surgical closure (palatoplasty) between 9–18 months.

7. Oblique Facial Cleft

- **Cause:**

- Failure of fusion between **lateral nasal** and **maxillary processes**.

- **Appearance:**

- Cleft extending from **upper lip** to **medial angle of eye**.

- **Accompanied by:**

- Defective formation of **nasolacrimal duct**.

- **Clinical Note:**

- Rare; often associated with severe craniofacial anomalies.

8. Median Cleft Lip

- **Cause:**

- Failure of fusion between **two medial nasal processes**.

- **Feature:**

- Midline cleft in upper lip, sometimes extending into nasal septum.

- **Association:**

- May accompany **holoprosencephaly** (defective forebrain division).

9. Macrostomia and Microstomia

- **Macrostomia:** Incomplete fusion of **maxillary and mandibular processes** ? abnormally large mouth.
- **Microstomia:** Excessive fusion of same processes ? abnormally small mouth.
- **Clinical Significance:** Both may coexist with facial clefts or mandibular anomalies.

10. Holoprosencephaly and Midline Facial Defects

- **Cause:**
 - Mutation in **Sonic hedgehog (SHH) gene** ? failure of midline patterning.
- **Clinical Spectrum:**
 - Single central incisor ? cyclopia (severe).
 - May include **median cleft face, hypotelorism, and agenesis of corpus callosum.**

11. Facial Asymmetry

- **Cause:**
 - Unequal development or hypoplasia of one side of face.
 - Common after **first arch syndromes** (e.g., *Treacher Collins*).
- **Effect:**
 - Distorted oral commissure and jaw alignment.

12. Tear Film Disorders

- **Deficiency of aqueous layer:** due to lacrimal gland dysfunction.
- **Deficiency of lipid layer:** due to meibomian gland dysfunction.
- **Deficiency of mucin layer:** due to conjunctival goblet cell loss.
- **Effect:**
 - Dry eye syndrome, corneal ulceration, irritation.

Frequently Asked Questions

1. What is the lacrimal apparatus?

It is the **system of structures that produce, secrete, and drain tears** from the eye.

Components: Lacrimal gland, ducts, canaliculi, lacrimal sac, and nasolacrimal duct.

2. Where is the lacrimal gland located?

In the **lacrimal fossa of the frontal bone**, at the **superolateral angle of the orbit**.

3. What are the two parts of the lacrimal gland?

- **Orbital part:** Large, lies above levator palpebrae aponeurosis.
- **Palpebral part:** Small, lies below the aponeurosis.

4. How do tears reach the conjunctival sac?

Through **10–12 small ducts** from the palpebral part of the lacrimal gland, opening into the **superior conjunctival fornix**.

5. What is the nerve supply of the lacrimal gland?

- **Sensory:** Lacrimal branch of ophthalmic nerve (V?).
- **Parasympathetic (secretomotor):**
 - From **facial nerve (VII)** ? greater petrosal nerve ? nerve of pterygoid canal ? pterygopalatine ganglion ? zygomatic branch (V?) ? lacrimal nerve ? gland.
- **Sympathetic:** From internal carotid plexus.

6. What is the arterial supply of the lacrimal gland?

By the **lacrimal branch of ophthalmic artery** (from internal carotid).

7. Where does the nasolacrimal duct open?

Into the **inferior meatus of the nose**, guarded by the **valve of Hasner**.

8. What is the function of tears?

- Lubricate and clean the eyeball.
- Nourish the cornea and conjunctiva.
- Contain **lysozyme** — antibacterial enzyme.

9. What causes epiphora (overflow of tears)?

Blockage of the **nasolacrimal duct** or **lacrimal puncta**.

10. What is dacryocystitis?

Inflammation of the **lacrimal sac**, often due to nasolacrimal duct obstruction.

11. What is the “danger area” of the face?

The **upper lip and lower part of the nose**.

- Infections here can spread via **angular vein** ? **superior ophthalmic vein** ? **cavernous sinus**, leading to **cavernous sinus thrombosis**.

12. From which embryonic structures does the face develop?

From **five facial prominences**:

1. **Frontonasal process**
2. **Paired maxillary processes**
3. **Paired mandibular processes**

13. What are nasal placodes and what do they form?

- **Nasal placodes** are ectodermal thickenings on the frontonasal process.
- Invaginate to form **nasal pits**, which develop into **nostrils** and **nasal cavities**.

14. What is the origin of the upper lip?

From **two medial nasal** and **two maxillary processes**.

- **Philtrum** from medial nasal processes.

- Rest of upper lip from maxillary processes.

15. What forms the lower lip and mandible?

By fusion of **two mandibular processes**.

16. What forms the cheeks?

By **maxillary processes** on either side.

17. What are the derivatives of the medial nasal processes?

- Philtrum of upper lip
- Premaxilla
- Primary palate
- Nasal septum

18. What are the derivatives of the lateral nasal processes?

- Alae (sides) of the nose
- Lateral walls of nasal cavities

19. What causes cleft lip?

Failure of **fusion between medial nasal and maxillary processes**.

20. What causes cleft palate?

Failure of **fusion of the palatine shelves** from maxillary processes.

21. What is an oblique facial cleft?

A cleft extending from **upper lip to medial angle of eye**, due to failure of fusion between **lateral nasal and maxillary processes**.

22. What is a median cleft lip?

Failure of fusion between **two medial nasal processes**, producing a midline defect.

23. What is the embryological basis of macrostomia and microstomia?

- **Macrostomia:** Incomplete fusion of **maxillary and mandibular processes** ? large mouth.
- **Microstomia:** Excessive fusion ? small mouth.

24. What molecular factor controls midline facial development?

Sonic Hedgehog (SHH) gene — regulates frontonasal process fusion and midline patterning.

25. What is the role of retinoic acid in facial development?

It regulates the **anterior-posterior axis**; imbalance causes **cleft lip/palate** and other anomalies.

26. What is the function of the valve of Hasner?

Prevents regurgitation of nasal contents into the **nasolacrimal duct**.

27. What is the clinical importance of the pterygopalatine ganglion?

It relays **parasympathetic fibers** to lacrimal gland, nasal glands, and palatine glands.

28. What are the layers of the tear film?

1. **Lipid layer** – from Meibomian glands (prevents evaporation).
2. **Aqueous layer** – from lacrimal gland (provides nutrients).
3. **Mucin layer** – from goblet cells (spreads tears evenly).

29. What are the main causes of congenital dacryocystitis?

Failure of canalization of **nasolacrimal duct** at the **valve of Hasner**.

30. What is the clinical importance of facial clefts?

- Cause **feeding and speech difficulties**.
- Associated with **nasal and maxillary maldevelopment**.
- Require surgical correction early in life.

Multiple Choice Questions

1. The lacrimal gland is located in the:

- a) Sphenoid bone
- b) Ethmoid bone
- ? c) Frontal bone**
- d) Maxilla

2. The nasolacrimal duct opens into the:

- a) Middle meatus of nose
- b) Superior meatus of nose

? c) Inferior meatus of nose

d) Common meatus

3. Parasympathetic fibers to lacrimal gland relay in the:

a) Otic ganglion

? b) Pterygopalatine ganglion

c) Submandibular ganglion

d) Ciliary ganglion

4. The valve guarding the opening of nasolacrimal duct is:

? a) Valve of Hasner

b) Valve of Krause

c) Valve of Bochdalek

d) Valve of Kerckring

5. The facial nerve supplies secretomotor fibers to:

? a) Lacrimal gland

b) Parotid gland

c) Sublingual gland

d) Thyroid gland

6. The nerve carrying secretomotor fibers to lacrimal gland is:

? a) Lacrimal nerve

b) Auriculotemporal nerve

c) Zygomaticotemporal nerve

d) Infraorbital nerve

7. The lacrimal gland drains into the:

a) Inferior fornix

? b) Superior fornix of conjunctiva

c) Caruncle

d) Nasal cavity

8. The nasolacrimal duct develops from:

- ? a) Ectodermal cord in naso-optic groove
- b) Endodermal pouch
- c) Mesodermal condensation
- d) Neural crest

9. Cleft lip results from failure of fusion between:

- ? a) Maxillary and medial nasal processes
- b) Medial and lateral nasal processes
- c) Two maxillary processes
- d) Mandibular processes

10. Cleft palate results from failure of fusion of:

- ? a) Palatine shelves
- b) Medial nasal processes
- c) Lateral nasal processes
- d) Mandibular arches

11. The upper lip is formed by:

- ? a) Maxillary and medial nasal processes
- b) Lateral nasal processes only
- c) Mandibular processes
- d) Frontonasal process alone

12. The lower lip develops from:

- ? a) Fusion of mandibular processes
- b) Maxillary and medial nasal processes
- c) Lateral nasal processes
- d) Frontal process

13. The alae (sides) of nose are derived from:

- ? a) Lateral nasal processes
- b) Medial nasal processes
- c) Maxillary processes

d) Mandibular processes

14. The philtrum of upper lip is derived from:

- ? a) Medial nasal processes
- b) Maxillary processes
- c) Mandibular processes
- d) Lateral nasal processes

15. The premaxilla is derived from:

- ? a) Intermaxillary segment (medial nasal fusion)
- b) Maxillary process
- c) Lateral nasal process
- d) Mandibular process

16. The frontonasal process gives rise to:

- ? a) Forehead and bridge of nose
- b) Philtrum
- c) Upper jaw
- d) Mandible

17. The oblique facial cleft results from failure of fusion between:

- ? a) Lateral nasal and maxillary processes
- b) Medial nasal and maxillary processes
- c) Mandibular and maxillary processes
- d) Two medial nasal processes

18. The median cleft lip results from failure of fusion between:

- ? a) Two medial nasal processes
- b) Medial and maxillary processes
- c) Lateral nasal and maxillary processes
- d) Two maxillary processes

19. The palatine shelves are derivatives of which embryonic structure?

- ? a) Maxillary process

- b) Mandibular process
- c) Medial nasal process
- d) Frontonasal process

20. The most common cause of congenital dacryocystitis is:

- ? **a) Failure of canalization at valve of Hasner**
- b) Infection of lacrimal gland
- c) Facial nerve lesion
- d) Overproduction of tears

21. Crocodile tears (Bogorad syndrome) occur due to:

- ? **a) Misrouting of facial nerve fibers**
- b) Damage to glossopharyngeal nerve
- c) Lacrimal gland tumor
- d) Pterygopalatine ganglion lesion

22. Which molecular signal regulates midline facial fusion?

- ? **a) SHH (Sonic Hedgehog)**
- b) BMP
- c) FGF
- d) Retinoic acid

23. Which gene regulates the patterning of the first pharyngeal arch?

- ? **a) DLX genes**
- b) SHH
- c) HOX A5
- d) MSX-1

24. Which bone develops from the frontonasal process?

- ? **a) Frontal bone**
- b) Maxilla
- c) Mandible
- d) Palatine bone

25. Failure of development of nasal placodes leads to:

- ? a) Absence of external nose (arhinia)
- b) Hypertelorism
- c) Cleft palate
- d) Cleft lip

Viva Voce Questions

1. What are the components of the lacrimal apparatus?

- Lacrimal gland
- Lacrimal ducts
- Lacrimal canaliculi
- Lacrimal sac
- Nasolacrimal duct

2. Where is the lacrimal gland situated?

In the **lacrimal fossa of the frontal bone**, at the **superolateral angle of the orbit**.

3. What are the two parts of the lacrimal gland?

- Orbital part (large)

- **Palpebral part** (small)

4. Into which structure do the lacrimal ducts open?

Into the **superior conjunctival fornix**.

5. What is the nerve supply of the lacrimal gland?

- **Sensory:** Lacrimal nerve (V?)
- **Secretomotor:** Facial nerve (via greater petrosal ? pterygopalatine ganglion ? zygomatic ? lacrimal)
- **Sympathetic:** From internal carotid plexus

6. What is the function of the lacrimal gland?

To secrete **tears** that lubricate, cleanse, and protect the eyeball.

7. What is the course of tears from the gland to the nose?

Lacrimal gland ? ducts ? conjunctival sac ? puncta ? canaliculi ? sac ? nasolacrimal duct ? inferior meatus.

8. What prevents reflux of nasal fluid into the nasolacrimal duct?

The **valve of Hasner**, at the lower end of the duct.

9. What is the cause of watery eyes (epiphora)?

Obstruction of the **nasolacrimal duct** or **lacrimal punctum**.

10. What is dacryocystitis?

Inflammation of the **lacrimal sac**, often due to nasolacrimal duct obstruction.

11. What is the embryological origin of the nasolacrimal duct?

From an **ectodermal cord** in the **naso-optic groove**, between maxillary and lateral nasal processes.

12. When does the face begin to develop?

During the **4th week of intrauterine life**.

13. Which processes take part in the formation of the face?

- **Frontonasal process**
- **Paired maxillary processes**
- **Paired mandibular processes**

14. What are nasal placodes and what do they form?

- Ectodermal thickenings on frontonasal process.
- Form **nasal pits**, which later become **nostrils** and **nasal cavities**.

15. What forms the upper lip?

Fusion of **two medial nasal** and **two maxillary processes**.

16. What forms the lower lip and mandible?

Fusion of **two mandibular processes**.

17. What are the derivatives of the medial nasal process?

- Philtrum of upper lip
- Premaxilla
- Primary palate
- Nasal septum

18. What are the derivatives of the lateral nasal process?

- Alae (sides) of nose
- Lateral walls of nasal cavity

19. What causes cleft lip?

Failure of fusion between **medial nasal** and **maxillary processes**.

20. What causes cleft palate?

Failure of **palatine shelves** (from maxillary processes) to fuse in midline.

21. What causes oblique facial cleft?

Failure of fusion between **lateral nasal** and **maxillary processes**.

22. What causes median cleft lip?

Failure of fusion between **two medial nasal processes**.

23. What causes macrostomia and microstomia?

- **Macrostomia:** Incomplete fusion of maxillary and mandibular processes.
- **Microstomia:** Excessive fusion of the same processes.

24. Which molecular factor controls midline facial development?

Sonic Hedgehog (SHH) gene.

25. Which molecular factors regulate facial prominence growth?

FGF, BMP, and TGF-? signaling pathways.

26. What is the clinical importance of SHH mutation?

Results in **holoprosencephaly**, with midline facial defects such as single central incisor or cyclopia.

27. What is the role of retinoic acid in facial morphogenesis?

It regulates anterior–posterior patterning; imbalance causes **cleft lip/palate**.

28. What is the function of the pterygopalatine ganglion?

Relay station for **parasympathetic fibers** to lacrimal, nasal, and palatine glands.

29. Which muscle helps drain tears into the lacrimal sac?

The **lacrimal part of orbicularis oculi** — acts as a “tear pump.”

30. What are common developmental anomalies of the face?

- Cleft lip
- Cleft palate

- Oblique facial cleft

- Median cleft lip

- Macrostomia

- Microstomia

- Hypotelorism

- Arhinia